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Module 1

¢ Objectives

AWhat are Boolean methods

A How to compute don’t care conditions

v Controllability
v Observability

A Boolean transformations
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Boolean methods

# Exploit Boolean properties of logic functions
# Use don 't care conditions

¢ More complex algorithms

A Potentially better solutions

A Harder to reverse the transformations

¢ Used within most synthesis tools
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External don ’t care conditions

# Controllability don “t care set CDC,,

A Input patterns never produced by the environment at the
network’ s input

# Observability don ’t care set ODC,

A Input patterns representing conditions when an output is not
observed by the environment

ARelative to each output

A Vector notation
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Overall external don ’t care set

+Sum the controllability don “t cares to each entry of the

observability don ’t care set vector

DC.yt = CDC;,+ODCyyt =
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Internal don 't care conditions
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Internal don 't care conditions

¢ Induced by the network structure

# Controllability don ’t care conditions:

A Patterns never produced at the inputs of a sub-network

# Observability don 't care conditions

A Patterns such that the outputs of a sub-network are not observed
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Example of optimization with don ’t cares

x=a'+b x=a’+b
= y=abx+a’cx [~

W

y=ax+a’'c

#CDC of y includes ab’ x +a’ x’

+Minimize f, to obtain: g, =ax+a'¢c
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Satisfiability don ’t care conditions

¢ Invariant of the network:

x=f - x#f, < SDC

‘SD C = Zall internal nodes X @ lfX

¢ Useful to compute controllability don't cares

(c) Giovanni De Micheli
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CDC Computation

¢Method 1: Network traversal algorithm
AConsider initial CDC = CDC,, at the primary inputs

AConsider different cutsets moving through the network
from inputs to outputs

AAs the cutset moves forward

v Consider SDC contribution of the newly considered block
v Remove unneeded variables by consensus

(c) Giovanni De Micheli 1



x1 X2 x3

(c) Giovanni De Micheli

x4

x1 X2 _x3 x4

12



Example

¢ Assume CDC;, =x," x,’

¢ Select vertex v,

A Contribution of v, to CDC_ = a @ (x; @ X,) o ___21__=___ = 2 e g o)
a Updated CDC_,= X" (X', +a D (X, @ Xy) ' d ™
A Drop variables D = {x,, X;} by consensus: ::::: s e oPendes )
A CDCey=xq X4 B9 e, c |
¢ Select vertex v, : ‘\‘ ;
4 Contribution to CDCyye b @ (x, + ) I . el T R
v Updated CDC,, = X, X, +b @ (x, +a) | 1 {x1,a.x4}
A Drop variables x, by consensus: ] : . ’E’]: o
v CDC . =b'x, +b’a o L L i, x2,x3,x4)
x1 x2 x3 x4

¢ ...
L 2 CDCout=e’ =Zz’
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CDC Computation

CONTROLLABILITY(G,(V,E), CDC;,) {

c=V:

cDC,.,=CDC;,;

foreach vertex v, € Vin topological order {
C=CUv,;
CDC,,=CDC_,+f, & x;
D ={v e Cs.t. all direct successors of v are in C}
foreach vertex v, € D

CD Ccut = y( CD Ccut);
C=C-D;
I;
CD Cout = CD Ccut;

(c) Giovanni De Micheli
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CDC Computation

¢ Method 2: range or image computation

¢ Consider the function f expressing the behavior of the
cutset variables in terms of primary inputs

¢ CDC, is the complement of the range of f when CDC;, =0
# CDC_, is the complement of the image of (CDC,,)’ under f

¢ The range and image can be computed recursively

A Terminal case: scalar function

ATherangeofy=f(x)isy+y (any value)
unless f (orf )is atautology and the rangeisy (ory’ )

(c) Giovanni De Micheli 15



Example

¢ range(f) = d range((b+c)|4=pc=1) + d’ range((b+c)|g=pc=o)
& Whend=1,thenbc=1—b+c=1is TAUTOLOGY

¢ If I choose 1 as top entry in output vector:

A the bottom entry is also 1. b —
i C_>—d 00 1
gat
? 1
2®—e 01 1
¢ When d =0, then bc =0 — b+c ={0,1}

¢ If | choose 0 as top entry in output vector:

A The bottom entry can be either 0 or 1.
& range(fj=de+d’ (e+e’)=de+d =d +e
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f = [ﬁ] _ [(X1+a)(x4+a)] i [ XX, + 3 ]

Z (x,+a)+(x,+a)| ~ | x,+x,+a
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Example

= 7 B

range(f) = d range(f3|x,x, +a)=1) + d’ range(f?|(x.x, + a)=0)

1

= d range(X, + X4 + a|xxx, +a)=1) + d’ range(x; + X4 + a|x;x, + a)=0)
=d range(1) + d’ range(a’ (x; ® xy))

=de+d (e+e’)

=e+d’

¢CDC, =(e+d’) =de” =2z,
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x1 XZ_X3 x4

f = [ﬁ] _ [(X1+a)(x4+a)] i [ XX, + 3 ]

Z (x,+a)+(x,+a)| ~ | x,+x,+a
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Example

e

image(f) = d image(f}|xx, +a=1) + d’ image(f?|xx, + a)=0)
= d image(X + X4 + a|xx, +a=1) + d’ image(x, + X, + a|x.x, + a)=0)
= d image(1) + d’ image(1)
=de+d’ e
=e

¢CDC,=¢ =2z
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Observability analysis

¢ Complementary to controllability

A Analyze network from outputs to inputs

¢ More complex because network has several outputs
and observability depends on output

# Observability may be understood in terms of perturbations

Alf you flip the polarity of a signal at net x, and there is no change
in the outputs, then x is not observable
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Observability don "t care conditions

+ Conditions under which a change in polarity of a signal x is
not perceived at the output

¢ If there is an explicit representation of the function,

the ODC is the complement of the Boolean difference
ODC =( of | ox)’

¢ Often, the terminal behavior is described implicitly

A Applying chain rule to Boolean difference is computationally hard

(c) Giovanni De Micheli 22



Tree-network traversal

# Consider network from outputs to input

¢ At root
AODC,, is given
Alt may be empty
¢ At internal nodes:
ALocal function y = f,(x)
A0DC, = (of,/ 9x)’ +0DC,
# Observability don’ t care set has two components:

A Observability of the local function and observability of the
network beyond the local block

(c) Giovanni De Micheli
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Example

e=bh+c¢

b=X1+a1 b c
C=X4+az

x1 a1 a2 x4

¢ Assume ODC_,;,=0DC_ =0

¢ 0DC, = (dfJob) =(b+¢)|,-1@ (b*¢),-0=C
¢ 0DC,_=(dfJoc) =b

¢ ODCx, = 0DC, + (of,/ox,)” =c +a,

(c) Giovanni De Micheli
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Non-tree network traversal

#®General networks have forks and fanout

reconvergence
b

oFor each fork point, the contribution to the |
ODC depends on both paths

¢Network traversal cannot be applied in a x1
straightforward way

¢More elaborate analysis is needed

(c) Giovanni De Micheli
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Two-way fork

¢Compute ODC sets associated with edges
¢Recombine ODCs at fork point

¢Theorem:
A ODC, = ODC,y \x=x’ é@oDcC,,
A 0DC, =0DC, - & 0DC,,

¢Multi-way forks can be reduced to a

sequence of two-way forks

(c) Giovanni De Micheli 26



0DC, = (bb) 0DC, = (°
¢
¢

b+X4

Xg * X

ODC,, =€ FX X,

0DC, = i

ODC, = ODC, |-, ® ODC, , = (a

(c) Giovanni De Micheli
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Don’ t care computation
summary

# Controllability don ’t cares are derived by image
computation

ARecursive algorithms and data structure are applied

# Observability don ’t cares are derived by backward traversal
A Exact and approximate computation

A Approximate methods compute don ’t care subsets

(c) Giovanni De Micheli 28



Transformations with don’ t cares

¢ Boolean simplification

A Generate local DC set for local functions
A Use heuristic minimizer (e.g., Espresso)

A Minimize the number of literals

¢ Boolean substitution:
A Simplify a function by adding one (ore more) inputs

A Equivalent to simplification with global don 't care sets

(c) Giovanni De Micheli

29



Example — Boolean substitution

¢ Substitute g=a+cdintof,=a+bcd+e
AObtainf,=a+bqg+e

¢ Method
A Compute SDC including q @ (atcd)=q’ a+q’ cd + ga’ (cd)’
ASimplifyf,=a+bcd+ewithDC=q a+q cd+qa (cd)
AObtainf, =a+ bq +e

¢ Result

A Simplified function has one fewer literal by changing the support
of f,

(c) Giovanni De Micheli 30



Simplification operator

# Cycle over the network blocks
A Compute local don’ t care conditions
AMinimize

¢ Issues:

ADon’ t care sets change as blocks are being simplified
Alteration may not have a fixed point

Alt would be efficient to parallelize some simplifications

(c) Giovanni De Micheli
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Optimization and perturbation

+ Minimizing a function at a block x is the replacement of a
local function f, with a new function g,

¢ This is equivalent to perturbing the network locally by
A 6X = fX @ gX
¢ Conditions for a feasible replacement

A Perturbation bounded by local don’ t care sets
A O, included in DC_,; + ODC + CDC

+ Smaller, approximate don ’t care sets can be used

A But have smaller degrees of freedom

(c) Giovanni De Micheli 32



Example

b_

1
—D

c—

¢ No external don 't care set.

¢ Replace AND by wire: g, = a

¢ Analysis:
AD=f ®g,=abPa=ab’
AODC, =y =b’ +c’

Ad=ab’ =<DC,=b’ +c’ = feasible!

(c) Giovanni De Micheli
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Parallel simplification

+ Parallel minimization of logic blocks is always possible
when blocks are logically independent

A Partitioned network
¢ Within a connected network, logic blocks affect each other

¢ Doing parallel minimization is like introducing multiple
perturbations

ABut it is attractive for efficiency reasons

¢ Perturbation analysis shows that degrees of freedom cannot
be represented by just an upper bound on the perturbation

A Boolean relation model

(c) Giovanni De Micheli 34



Example

¢Perturbations at x and y are
related because of the
reconvergent fanout at z

¢Cannot change simultaneously

A abintoa

Acbintoc

(c) Giovanni De Micheli
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Boolean relation model

a X

\
Z

IO

\

¢ y

a b ¢ T,y

O O O { 00, 01, 10 }

O O 1 { 00, 01, 10 }

O 1 O { 00, 01, 10 }

O 1 1 { 00, 01, 10 }

1 0 O { 00, 01, 10 }

1 0 1 { 00, 01, 10 }

1 1 O { 00, 01, 10 }

1 1 1 { 11 }
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Boolean relation model

¢ Boolean relation minimization is the correct approach to
handle Boolean optimization at multiple vertices

¢ Necessary steps

ADerive equivalence classes for Boolean relation

A Use relation minimizer

¢ Practical considerations

A High computational requirement to use Boolean relations

A Use approximations instead

(c) Giovanni De Micheli 37



Parallel Boolean optimization
compatible don 't care sets

¢ Determine a subset of don ’t care sets which is safe to use
in a parallel minimization

ARemove those degrees of freedom that can lead to
transformations incompatible with others effected in parallel

# Using compatible don ’t care sets, only upper bounds on
the perturbation need to be satisfied

¢ Faster and efficient method

(c) Giovanni De Micheli 38



Example

¢ Parallel optimization at two vertices

¢ First vertex x

ACODC equal to ODC set
ACODC, =0DC,

¢ Second vertex y

ACODC is smaller than its ODC to be safe enough to allow for
transformations permitted by the first ODC

ACODC, =C,(0DC,) + ODC, ODC’ ,
¢ Order dependence

(c) Giovanni De Micheli
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a >_ X
c > y
#CODC, =0DC, =X =b’ +a’

¢0DC, =y’ =b’ +¢’
+ CODC, =C,(0ODC,) + ODC,(ODC,)’

=C,(y )ty x=y x

=(b’ +c’ )ab =abc’

(c) Giovanni De Micheli
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Example (2)

a— O «
b — >J]:D—L

c y

¢ Allowed perturbation:
Af,=bc—g,=c
Ad,=bc®c=b ccCODC,=b" +a’
¢ Disallowed perturbation:
Af =ab—g,=a
Ad,=ab®a=ab’ ¢ CODC, =abc’
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Boolean methods
Summary

¢ Boolean methods are powerful means to restructure networks

A Computationally intensive

# Boolean methods rely heavily on don ’t care computation

A Efficient methods

A Possibility to subset the don ’t care sets

¢ Boolean method often change the network substantially,
and it is hard to undo Boolean transformations

(c) Giovanni De Micheli 42



Module 2

¢ Objectives
A Testability

A Relations between testability and Boolean methods

(c) Giovanni De Micheli
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Testability

¢ Generic term to mean easing the testing of a circuit

¢ Testability in logic synthesis context
A Assume combinational circuit
A Assume single/multiple stuck-at fault
o Testability is referred to as the possibility of generating
test sets for all faults

A Property of the circuit

A Related to fault coverage

(c) Giovanni De Micheli
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Test for stuck-ats

¢ Net y stuck-at 0
AInput pattern that sets y to TRUE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Net y stuck-at 1
AInput pattern that sets y to FALSE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Testing is based on controllability and observability

(c) Giovanni De Micheli 45



Test sets — don 't care interpretation

¢Stuck-at 0 on nety
A{ Input vector t such that y(t) ODC’ y (t) =1}

¢Stuck-at 1 on nety
A{ Input vector t such thaty’ (t) ODC’ y (t) =1}

(c) Giovanni De Micheli
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Using testing methods for synthesis

¢ Redundancy removal
AUse ATPG to search for untestable fault
¢ If stuck-at 0 on net y is untestable:
ASety=0
A Propagate constant
¢ If stuck-at 1 on net y is untestable
ASety=1

A Propagate constant

¢ lterate for each untestable fault

(c) Giovanni De Micheli
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Redundancy removal and perturbation analysis

oStuck-atOony
Ay setto 0. Namely g, = f,| - p— X
APerturbation:

V5 =f, @ f |, = y- Of, 0y
¢ Perturbation is feasible < fault is untestable

ANo input vector t can make y(t)- ODC,’ (t) true

ANo input vector t can make y(t)- ODC,’ (t): of,/dy true
vBecause ODC, = ODC, + (df,/oy)’

(c) Giovanni De Micheli 49



Redundancy removal and perturbation analysis

¢ Assume untestable stuck-at 0 faulit.
ey- ODC, - of,/oy — SDC

¢ Local don’ t care set:
ADC, 5 0DC, +y- ODC,’ - of,/dy
ADC, o ODC, +y:- of /oy

o Perturbation 6 =y of /dy

Alncluded in the local don’ t care set

(c) Giovanni De Micheli
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Rewiring

¢ Extension to redundancy removal

A Add connection in a circuit
A Create other redundant connections

ARemove redundant connections

¢ lterate procedure to reduce network

A A connection corresponds to a wire
A Rewiring modifies gates and wiring structure

A Wires may have specific costs due to distance

(c) Giovanni De Micheli
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Example
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Synthesis for testability

# Synthesize fully testable circuits

AFor single or multiple stuck-at faults

¢ Realizations

ATwo-level forms

A Multi-level networks

# Since synthesis can modify the network properties,
testability can be addressed during synthesis

(c) Giovanni De Micheli
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Two-level forms

o Full testability for single stuck-at faults:

APrime and irredundant covers

o Full testability for multiple stuck-at faults

APrime and irredundant cover when

v Single output function
v No product-term sharing
v Each component is prime and irredundant

(c) Giovanni De Micheli
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Example f=a’b’ +b’ c+ac+ab

v A1)
G,
.| A2 )
=
T A )
. )
T A, )

o
|
NaS
-
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Multiple-level networks

¢ Consider logic networks with local functions in sop form

¢ Prime and irredundant network

A No literal and no implicant of any local function can be dropped

A The AND-OR implementation is fully testable for single stuck-at faults

< Simultaneous prime and irredundant network

A No subsets of literals and no subsets of implicants can be dropped

A The AND-OR implementation is fully testable for multiple stuck-ats
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Synthesis for testability

¢ Heuristic logic minimization (e.g., Espresso) is sufficient to
insure testability of two-level forms

# To achieve fully testable networks, simplification has to be
applied to all logic blocks with full don ’t care sets

¢ In practice, don’ t care sets change as neighboring blocks
are optimized

¢ Redundancy removal is a practical way of achieving
testability properties
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Summary - Synthesis for testability

¢ There is synergy between synthesis and testing

ADon’ t care conditions play a major role in both fields

¢ Testable network correlate to a small area implementation
¢ Testable network do not require to slow-down the circuit

¢ Algebraic transformations preserve multi-fault testability,
and are preferable under this aspect

(c) Giovanni De Micheli 58



