

# *Boolean Methods for Multi-level Logic Synthesis*

**Giovanni De Micheli**  
*Integrated Systems Laboratory*



---

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

# Module 1

---

## ◆ Objectives

- ▲ What are Boolean methods
- ▲ How to compute *don't care* conditions
  - ▼ Controllability
  - ▼ Observability
- ▲ Boolean transformations

# Boolean methods

---

- ◆ Exploit Boolean properties of logic functions
- ◆ Use *don't care* conditions
- ◆ More complex algorithms
  - ▲ Potentially better solutions
  - ▲ Harder to reverse the transformations
- ◆ Used within most synthesis tools

# External *don't care* conditions

---

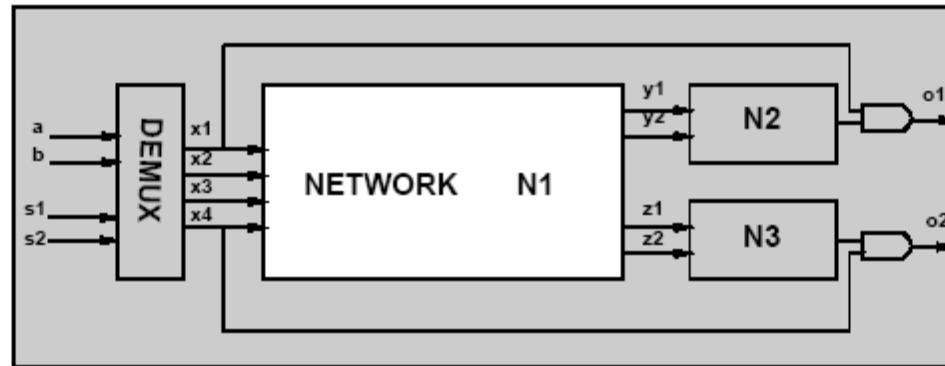
- ◆ **Controllability *don't care* set  $CDC_{in}$**

- ▲ Input patterns never produced by the environment at the network's input

- ◆ **Observability *don't care* set  $ODC_{out}$**

- ▲ Input patterns representing conditions when an output is not observed by the environment
  - ▲ Relative to each output
  - ▲ Vector notation

# Example



- Inputs driven by a de-multiplexer.
- $CDC_{in} = x'_1 x'_2 x'_3 x'_4 + x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$ .

- Outputs observed when  $\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \mathbf{1}$

$$\mathbf{ODC}_{out} = \begin{bmatrix} x'_1 \\ x'_1 \\ x'_4 \\ x'_4 \end{bmatrix}$$

## Overall external *don't care* set

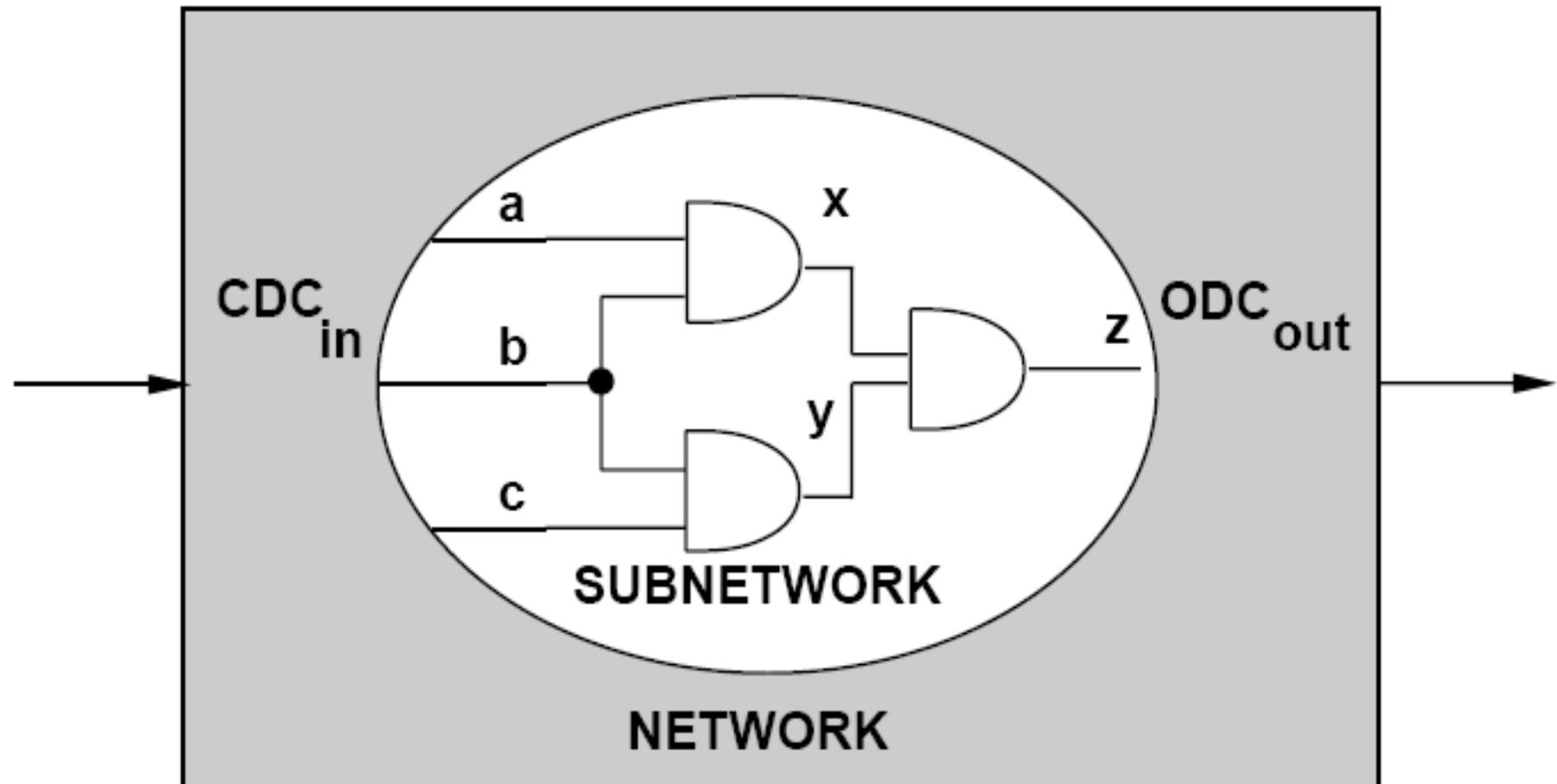
---

- ◆ Sum the controllability *don't cares* to each entry of the observability *don't care* set vector

$$\mathbf{DC}_{ext} = \mathbf{CDC}_{in} + \mathbf{ODC}_{out} = \begin{bmatrix} x'_1 + x_2 + x_3 + x_4 \\ x'_1 + x_2 + x_3 + x_4 \\ x'_4 + x_2 + x_3 + x_1 \\ x'_4 + x_2 + x_3 + x_1 \end{bmatrix}$$

# Internal don't care conditions

---

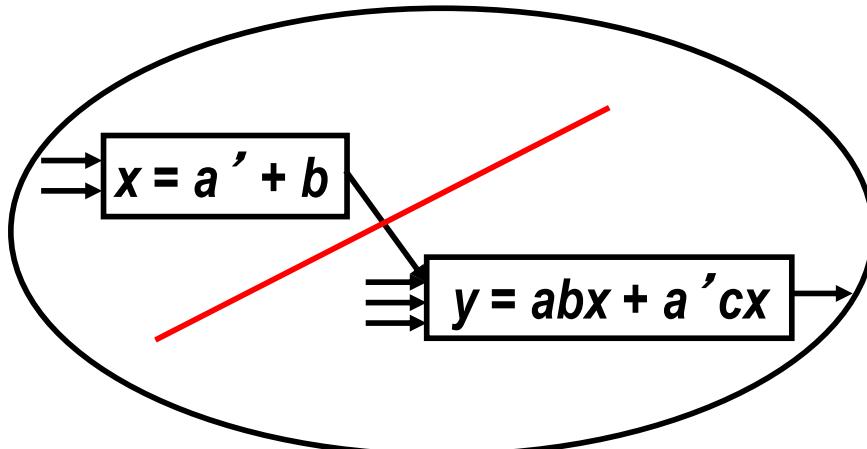
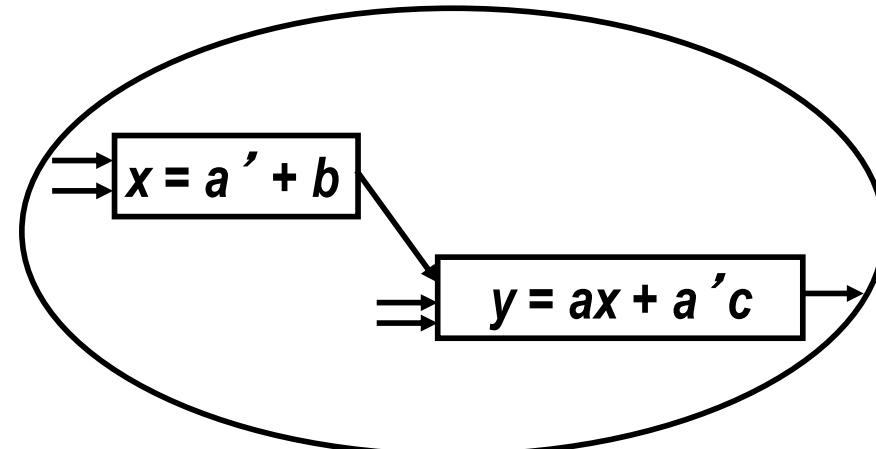


# **Internal *don't care* conditions**

---

- ◆ **Induced by the network structure**
- ◆ **Controllability *don't care* conditions:**
  - ▲ Patterns never produced at the inputs of a sub-network
- ◆ **Observability *don't care* conditions**
  - ▲ Patterns such that the outputs of a sub-network are not observed

# Example of optimization with *don't cares*



- ◆ CDC of  $y$  includes  $ab'x + a'x'$
- ◆ Minimize  $f_y$  to obtain:  $g_y = ax + a'c$

# Satisfiability don't care conditions

---

- ◆ Invariant of the network:

$$x = f_x \rightarrow x \neq f_x \subseteq SDC$$

$$\diamond SDC = \sum_{\text{all internal nodes}} x \oplus f_x$$

- ◆ Useful to compute controllability don't cares

# CDC Computation

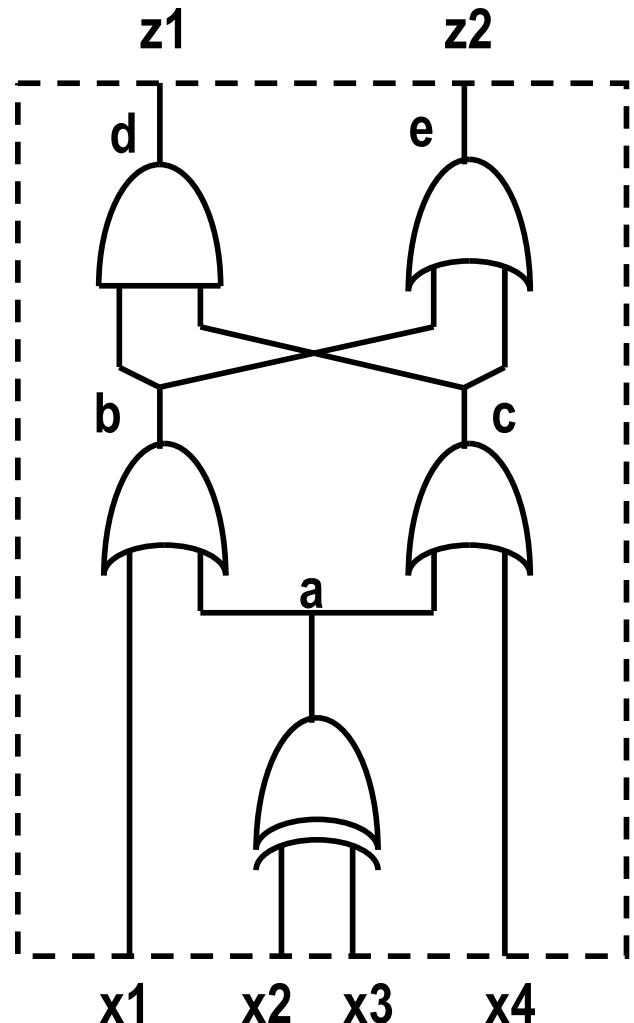
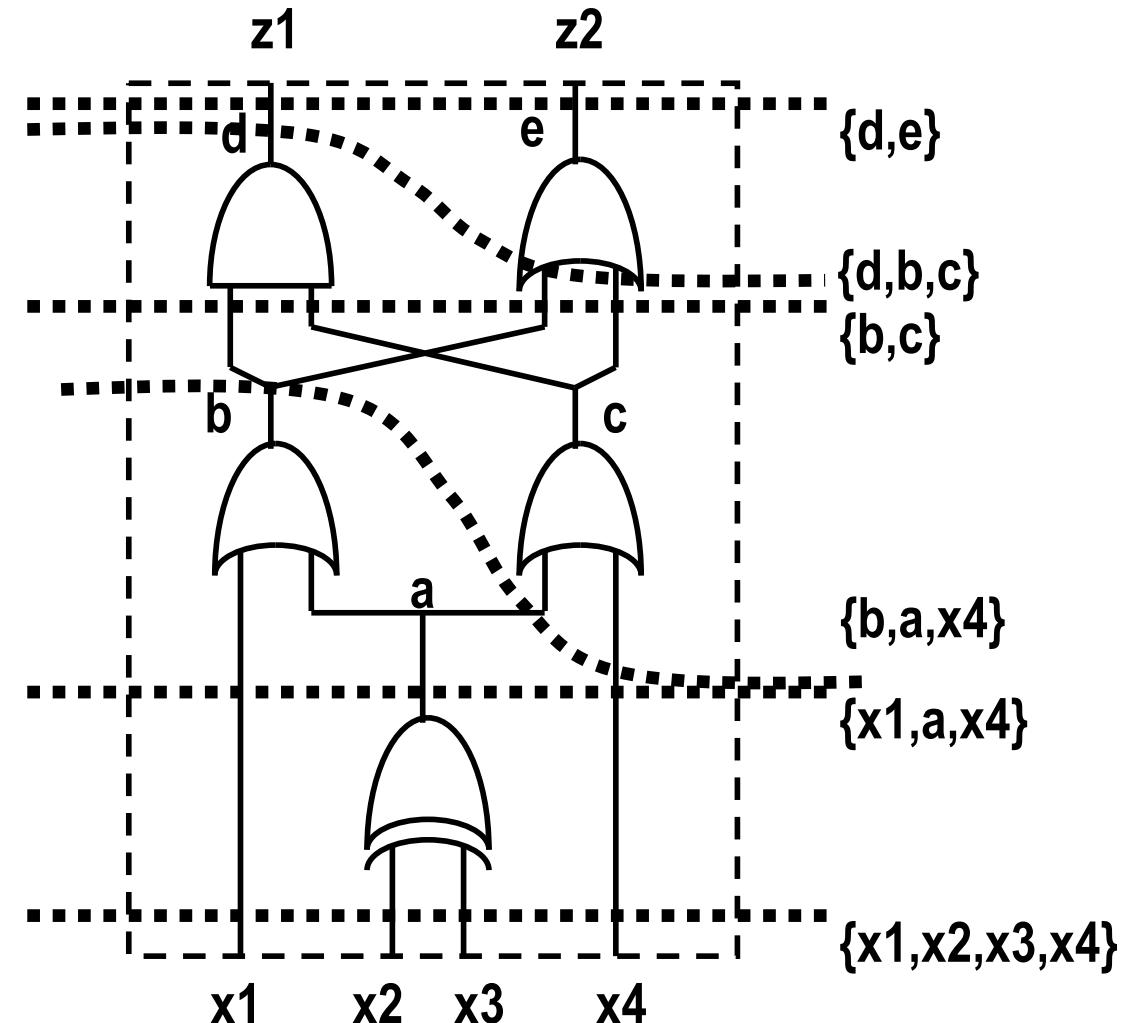
---

## ◆ Method 1: Network traversal algorithm

- ▲ Consider initial  $CDC = CDC_{in}$  at the primary inputs
- ▲ Consider different cutsets moving through the network from inputs to outputs
- ▲ As the cutset moves forward
  - ▼ Consider  $SDC$  contribution of the newly considered block
  - ▼ Remove unneeded variables by consensus

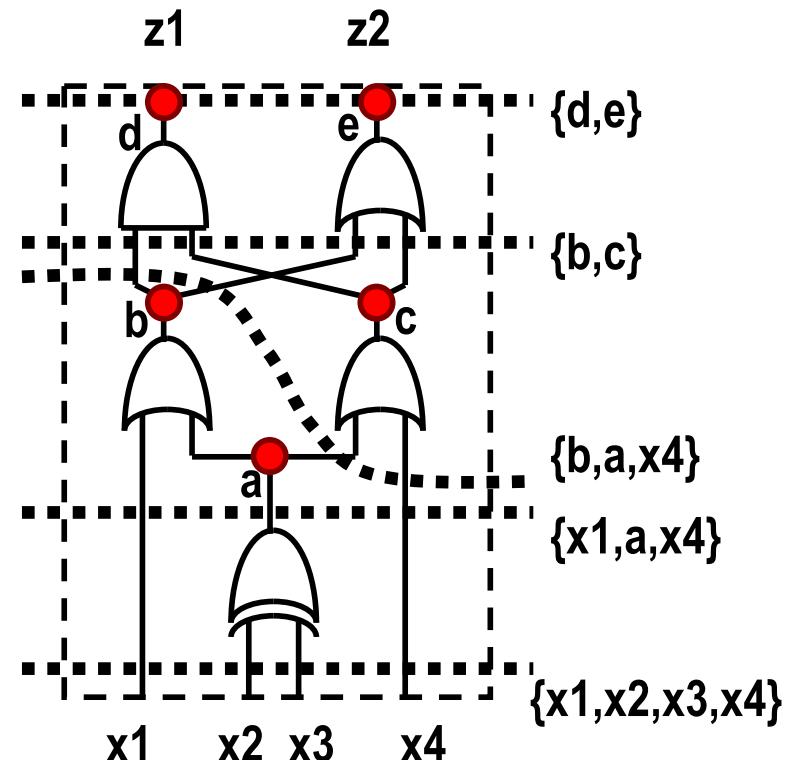
# Example

---



# Example

- ◆ Assume  $CDC_{in} = x_1' x_4'$
- ◆ Select vertex  $v_a$ 
  - ▲ Contribution of  $v_a$  to  $CDC_{cut} = a \oplus (x_2 \oplus x_3)$
  - ▲ Updated  $CDC_{cut} = x_1' x_4' + a \oplus (x_2 \oplus x_3)$
  - ▲ Drop variables  $D = \{x_2, x_3\}$  by consensus:
  - ▲  $CDC_{cut} = x_1' x_4'$
- ◆ Select vertex  $v_b$ 
  - ▲ Contribution to  $CDC_{cut}$ :  $b \oplus (x_1 + a)$ .
  - ▼ Updated  $CDC_{cut} = x_1' x_4' + b \oplus (x_1 + a)$
  - ▲ Drop variables  $x_1$  by consensus:
    - ▼  $CDC_{cut} = b' x_4' + b' a$
- ◆ ...
- ◆  $CDC_{out} = e' = z_2'$



# CDC Computation

---

**CONTROLLABILITY**( $G_n(V, E)$  ,  $CDC_{in}$ ) {

$C = V$ ;

$CDC_{cut} = CDC_{in}$ ;

    foreach vertex  $v_x \in V$  in topological order {

$C = C \cup v_x$ ;

$CDC_{cut} = CDC_{cut} + f_x \oplus x$ ;

$D = \{v \in C \text{ s.t. all direct successors of } v \text{ are in } C\}$

        foreach vertex  $v_y \in D$

$CDC_{cut} = C_y(CDC_{cut})$ ;

$C = C - D$ ;

    };

$CDC_{out} = CDC_{cut}$ ;

}

# CDC Computation

---

- ◆ Method 2: range or image computation
- ◆ Consider the function  $f$  expressing the behavior of the cutset variables in terms of primary inputs
- ◆  $CDC_{cut}$  is the complement of the range of  $f$  when  $CDC_{in} = 0$
- ◆  $CDC_{cut}$  is the complement of the image of  $(CDC_{in})'$  under  $f$
- ◆ The range and image can be computed recursively
  - ▲ Terminal case: scalar function
  - ▲ The range of  $y = f(x)$  is  $y + y'$  (any value) unless  $f$  (or  $f'$ ) is a tautology and the range is  $y$  (or  $y'$ )

# Example

---

◆  $\text{range}(f) = d \text{ range}((b+c)|_{d=bc=1}) + d' \text{ range}((b+c)|_{d=bc=0})$

◆ When  $d = 1$ , then  $bc = 1 \rightarrow b + c = 1$  is TAU TOLOGY

◆ If I choose 1 as top entry in output vector:

▲ the bottom entry is also 1.

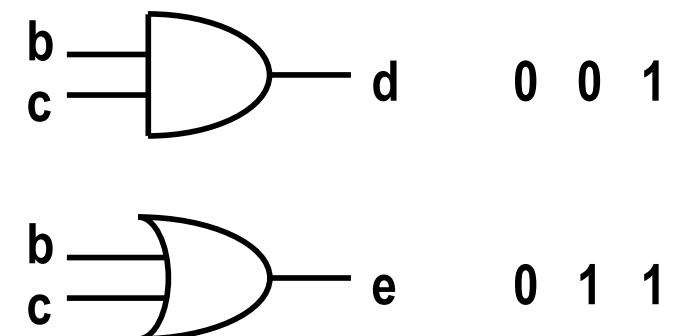
$$\begin{bmatrix} 1 \\ ? \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

◆ When  $d = 0$ , then  $bc = 0 \rightarrow b+c = \{0,1\}$

◆ If I choose 0 as top entry in output vector:

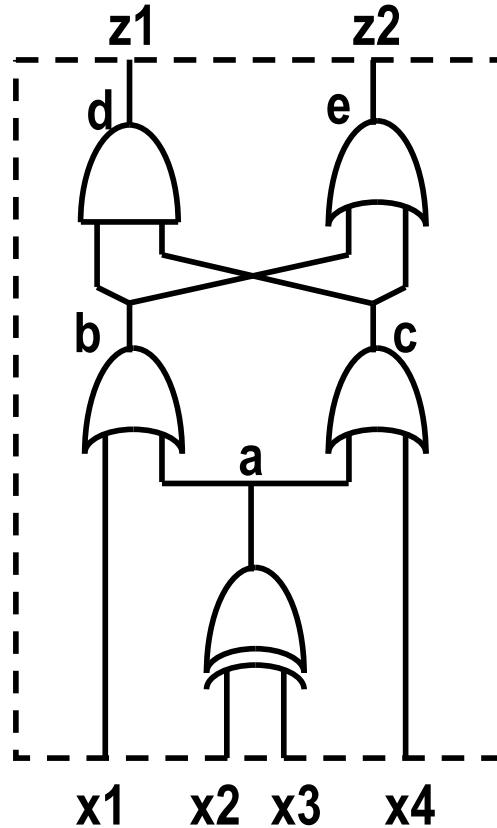
▲ The bottom entry can be either 0 or 1.

◆  $\text{range}(f) = de + d' (e + e') = de + d' = d' + e$



# Example

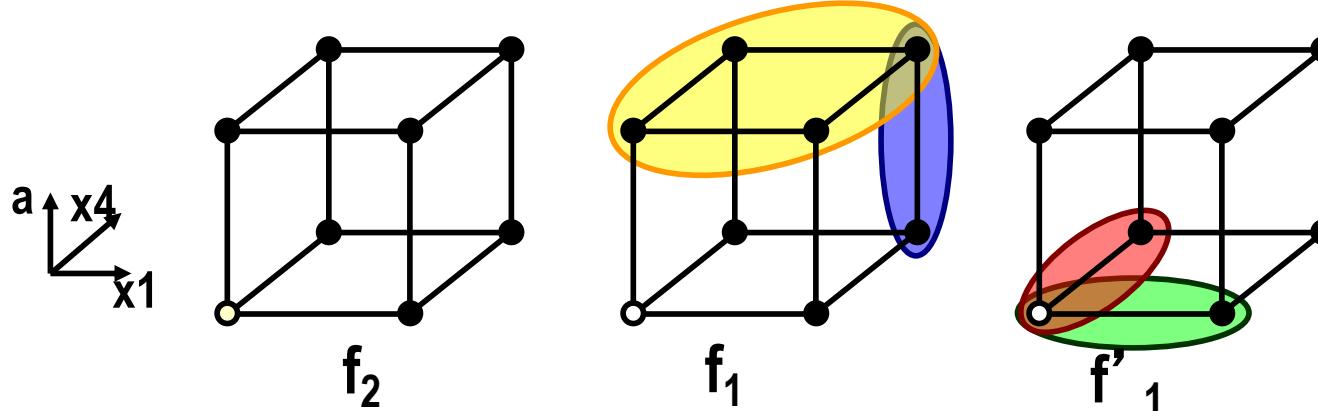
---



$$f = \begin{bmatrix} f^1 \\ f^2 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \end{bmatrix}$$

# Example

---



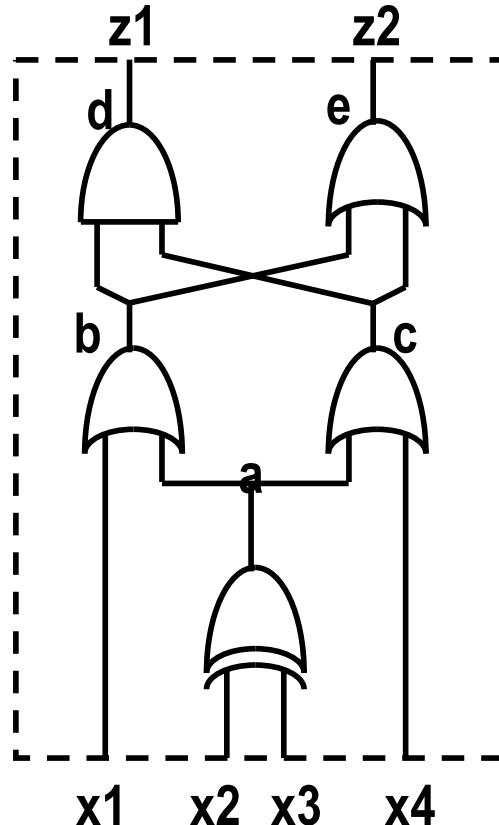
$$\begin{aligned}
 \text{range}(f) &= d \text{ range}(f^2|_{(x_1x_4 + a)=1}) + d' \text{ range}(f^2|_{(x_1x_4 + a)=0}) \\
 &= d \text{ range}(x_1 + x_4 + a|_{(x_1x_4 + a)=1}) + d' \text{ range}(x_1 + x_4 + a|_{(x_1x_4 + a)=0}) \\
 &= d \text{ range}(1) + d' \text{ range}(a' (x_1 \oplus x_4)) \\
 &= de + d' (e + e') \\
 &= e + d'
 \end{aligned}$$

◆  $\text{CDC}_{\text{out}} = (e + d')' = de' = z_1 z_2'$

# Example

---

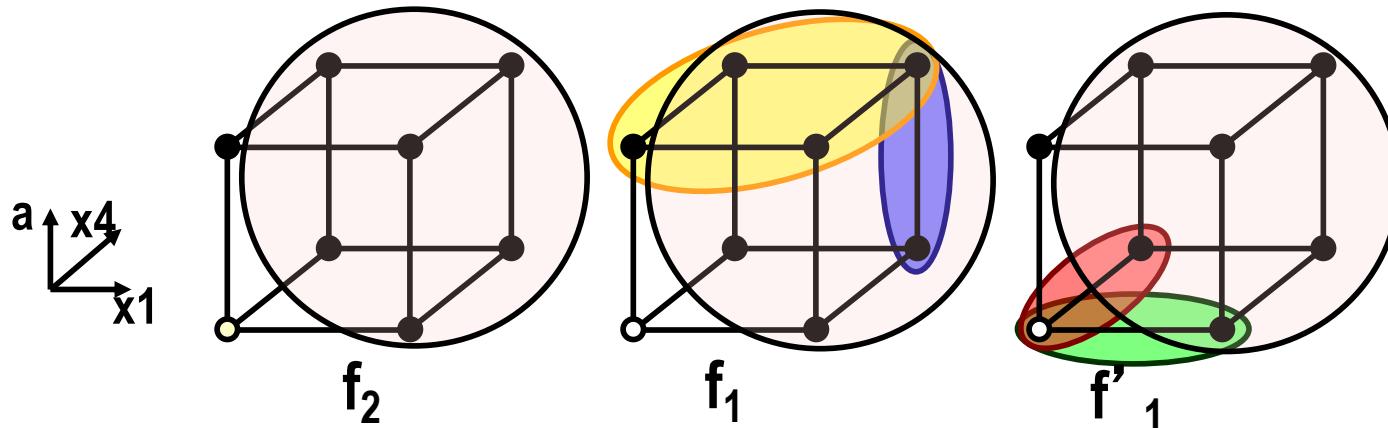
$$CDC_{in} = x'_1 x'_4$$



$$f = \begin{bmatrix} f^1 \\ f^2 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1 x_4 + a \\ x_1 + x_4 + a \end{bmatrix}$$

# Example

---



$$\begin{aligned} \text{image}(f) &= d \text{ image}(f^2|_{(x_1x_4 + a)=1}) + d' \text{ image}(f^2|_{(x_1x_4 + a)=0}) \\ &= d \text{ image}(x_1 + x_4 + a|_{(x_1x_4 + a)=1}) + d' \text{ image}(x_1 + x_4 + a|_{(x_1x_4 + a)=0}) \\ &= d \text{ image}(1) + d' \text{ image}(1) \\ &= de + d' e \\ &= e \end{aligned}$$

◆ **CDC<sub>out</sub> = e' = z<sub>2'</sub>**

# Observability analysis

---

- ◆ Complementary to controllability
  - ▲ Analyze network from outputs to inputs
- ◆ More complex because network has several outputs and observability depends on output
- ◆ Observability may be understood in terms of perturbations
  - ▲ If you flip the polarity of a signal at net  $x$ , and there is no change in the outputs, then  $x$  is not observable

# Observability don 't care conditions

---

- ◆ Conditions under which a change in polarity of a signal **x** is not perceived at the output
- ◆ If there is an explicit representation of the function, the **ODC** is the complement of the Boolean difference  
$$\text{ODC} = (\partial f / \partial x)'$$
- ◆ Often, the terminal behavior is described implicitly
  - ▲ Applying chain rule to Boolean difference is computationally hard

# Tree-network traversal

---

- ◆ Consider network from outputs to input
- ◆ At root
  - ▲  $ODC_{out}$  is given
  - ▲ It may be empty
- ◆ At internal nodes:
  - ▲ Local function  $y = f_y(x)$
  - ▲  $ODC_x = (\partial f_y / \partial x)' + ODC_y$
- ◆ Observability don't care set has two components:
  - ▲ Observability of the local function and observability of the network beyond the local block

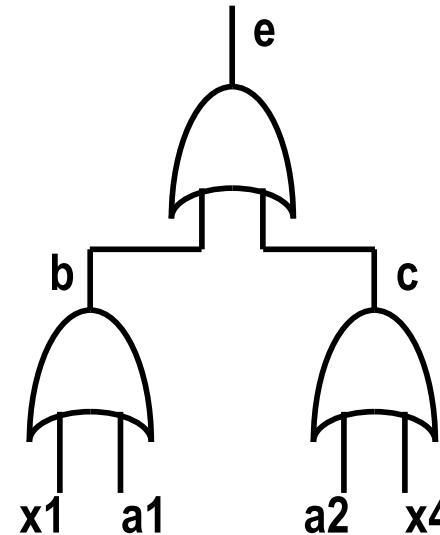
# Example

---

$$e = b + c$$

$$b = x_1 + a_1$$

$$c = x_4 + a_2$$

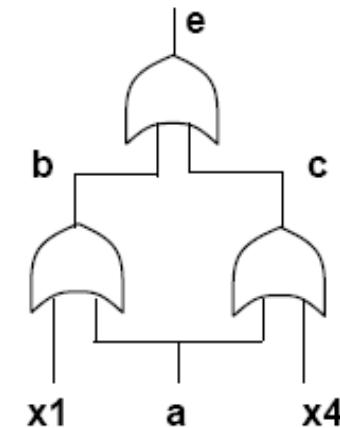


- ◆ Assume  $ODC_{out} = ODC_e = 0$
- ◆  $ODC_b = (\partial f_e / \partial b)' = (b + c)|_{b=1} \oplus (b + c)|_{b=0} = c$
- ◆  $ODC_c = (\partial f_e / \partial c)' = b$
- ◆  $ODC_{x_1} = ODC_b + (\partial f_b / \partial x_1)' = c + a_1$

# Non-tree network traversal

---

- ◆ General networks have forks and fanout reconvergence
- ◆ For each fork point, the contribution to the ODC depends on both paths
- ◆ Network traversal cannot be applied in a straightforward way
- ◆ More elaborate analysis is needed



# Two-way fork

---

- ◆ Compute **ODC** sets associated with edges

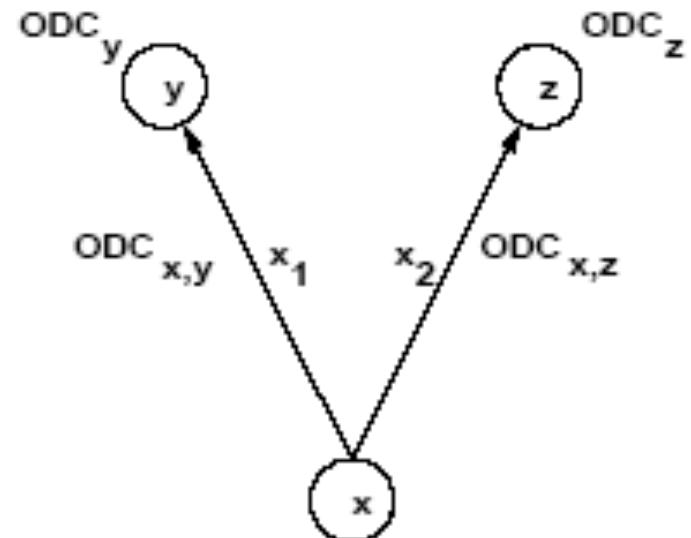
- ◆ Recombine ODCs at fork point

- ◆ Theorem:

$$\blacktriangle ODC_x = ODC_{x,y|x=x} \overline{\oplus} ODC_{x,z}$$

$$\blacktriangle ODC_x = ODC_{x,z|x=x} \overline{\oplus} ODC_{x,y}$$

- ◆ Multi-way forks can be reduced to a sequence of two-way forks



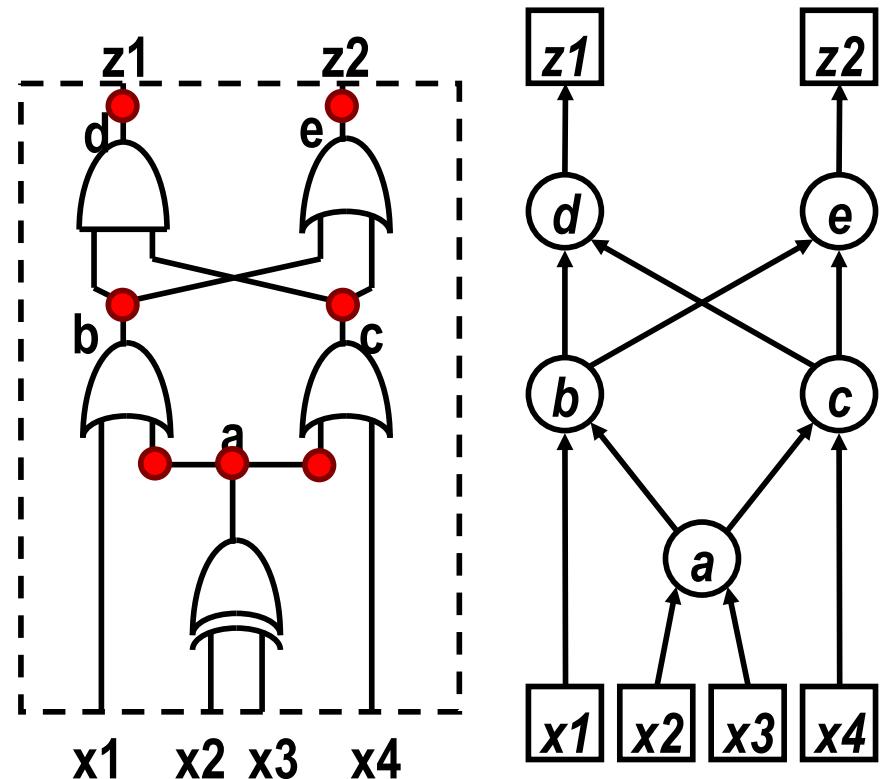
# Example

$$ODC_c = \binom{b'}{b}; \quad ODC_b = \binom{c'}{c};$$

$$ODC_{a,b} = \binom{c' + x_1}{c + x_1} = \binom{a' x_4' + x_1}{a + x_4 + x_1}$$

$$ODC_{a,c} = \binom{b' + x_4}{b + x_4} = \binom{a' x_1' + x_4}{a + x_1 + x_4}$$

$$ODC_a = ODC_{a,b}|_{a=a} \overline{\oplus} ODC_{a,c} = \binom{a x_4' + x_1}{a' + x_4 + x_1} \overline{\oplus} \binom{a' x_1' + x_4}{a + x_1 + x_4} = \binom{x_1 x_4}{x_1 + x_4}$$



## Don't care computation summary

---

- ◆ Controllability *don't cares* are derived by image computation
  - ▲ Recursive algorithms and data structure are applied
- ◆ Observability *don't cares* are derived by backward traversal
  - ▲ Exact and approximate computation
  - ▲ Approximate methods compute *don't care* subsets

# Transformations with don't cares

---

## ◆ Boolean simplification

- ▲ Generate local DC set for local functions
- ▲ Use heuristic minimizer (e.g., Espresso)
- ▲ Minimize the number of literals

## ◆ Boolean substitution:

- ▲ Simplify a function by adding one (ore more) inputs
- ▲ Equivalent to simplification with **global don't care** sets

# Example – Boolean substitution

---

◆ Substitute  $q = a + cd$  into  $f_h = a + bcd + e$

▲ Obtain  $f_h = a + bq + e$

◆ Method

▲ Compute SDC including  $q \oplus (a+cd) = q' a + q' cd + qa' (cd)'$

▲ Simplify  $f_h = a + bcd + e$  with  $DC = q' a + q' cd + qa' (cd)'$

▲ Obtain  $f_h = a + bq + e$

◆ Result

▲ Simplified function has one fewer literal by changing the support of  $f_h$

# Simplification operator

---

- ◆ Cycle over the network blocks

- ▲ Compute local don't care conditions
  - ▲ Minimize

- ◆ Issues:

- ▲ Don't care sets change as blocks are being simplified
  - ▲ Iteration may not have a fixed point
  - ▲ It would be efficient to parallelize some simplifications

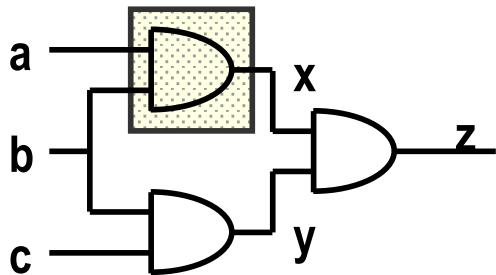
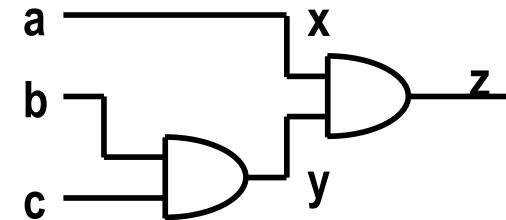
# Optimization and perturbation

---

- ◆ Minimizing a function at a block  $\mathbf{x}$  is the replacement of a local function  $f_x$  with a new function  $g_x$
- ◆ This is equivalent to perturbing the network locally by
  - ▲  $\delta_x = f_x \oplus g_x$
- ◆ Conditions for a feasible replacement
  - ▲ Perturbation bounded by local don't care sets
  - ▲  $\delta_x$  included in  $DC_{ext} + ODC + CDC$
- ◆ Smaller, approximate *don't care sets* can be used
  - ▲ But have smaller degrees of freedom

# Example

---



- ◆ No external *don't care* set.
- ◆ Replace AND by wire:  $g_x = a$
- ◆ Analysis:
  - ▲  $\Delta = f_x \oplus g_x = ab \oplus a = ab'$
  - ▲  $ODC_x = y' = b' + c'$
  - ▲  $\Delta = ab' \subseteq DC_x = b' + c' \Rightarrow \text{feasible!}$

# Parallel simplification

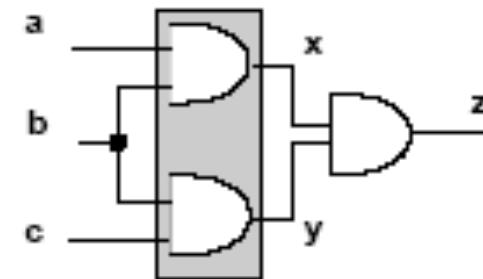
---

- ◆ Parallel minimization of logic blocks is always possible when blocks are logically independent
  - ▲ Partitioned network
- ◆ Within a connected network, logic blocks affect each other
- ◆ Doing parallel minimization is like introducing multiple perturbations
  - ▲ But it is attractive for efficiency reasons
- ◆ Perturbation analysis shows that degrees of freedom cannot be represented by just an upper bound on the perturbation
  - ▲ Boolean relation model

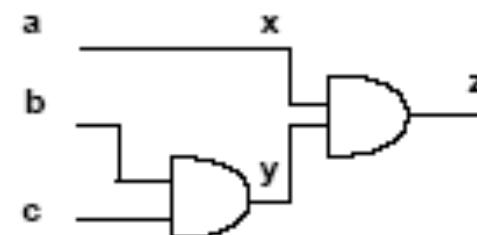
# Example

---

- ◆ Perturbations at **x** and **y** are related because of the reconvergent fanout at **z**
- ◆ Cannot change simultaneously
  - ▲ **ab** into **a**
  - ▲ **cb** into **c**

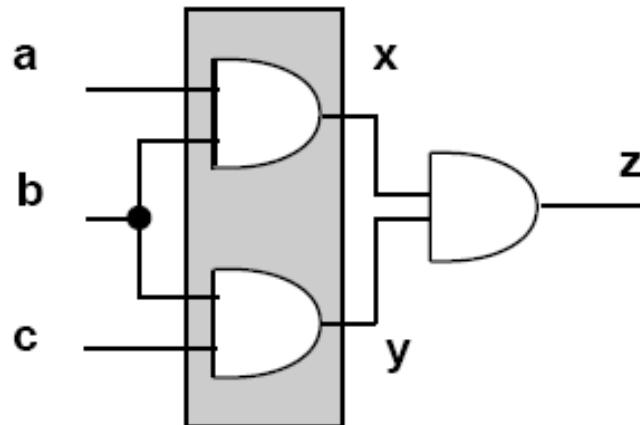


(a)



# Boolean relation model

---



| $a$ | $b$ | $c$ | $x, y$             |
|-----|-----|-----|--------------------|
| 0   | 0   | 0   | $\{ 00, 01, 10 \}$ |
| 0   | 0   | 1   | $\{ 00, 01, 10 \}$ |
| 0   | 1   | 0   | $\{ 00, 01, 10 \}$ |
| 0   | 1   | 1   | $\{ 00, 01, 10 \}$ |
| 1   | 0   | 0   | $\{ 00, 01, 10 \}$ |
| 1   | 0   | 1   | $\{ 00, 01, 10 \}$ |
| 1   | 1   | 0   | $\{ 00, 01, 10 \}$ |
| 1   | 1   | 1   | $\{ 11 \}$         |

| $a$ | $b$ | $c$ | $x, y$ |
|-----|-----|-----|--------|
| 1   | *   | *   | 10     |
| *   | 1   | 1   | 01     |

# Boolean relation model

---

- ◆ Boolean relation minimization is the correct approach to handle Boolean optimization at multiple vertices
- ◆ Necessary steps
  - ▲ Derive equivalence classes for Boolean relation
  - ▲ Use relation minimizer
- ◆ Practical considerations
  - ▲ High computational requirement to use Boolean relations
  - ▲ Use approximations instead

## Parallel Boolean optimization compatible *don't care* sets

---

- ◆ Determine a subset of *don't care* sets which is safe to use in a parallel minimization
  - ▲ Remove those degrees of freedom that can lead to transformations incompatible with others effected in parallel
- ◆ Using **compatible *don't care* sets**, only upper bounds on the perturbation need to be satisfied
- ◆ Faster and efficient method

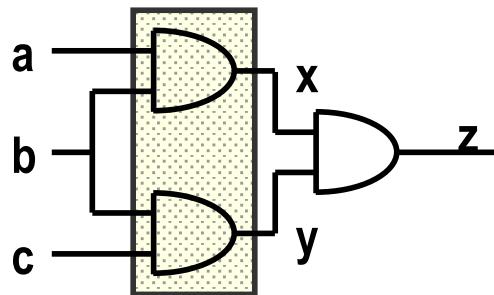
# Example

---

- ◆ Parallel optimization at two vertices
- ◆ First vertex  $x$ 
  - ▲ CODC equal to ODC set
  - ▲  $CODC_x = ODC_x$
- ◆ Second vertex  $y$ 
  - ▲ CODC is smaller than its ODC to be safe enough to allow for transformations permitted by the first ODC
  - ▲  $CODC_y = C_x(ODC_y) + ODC_y ODC'_x$
- ◆ Order dependence

# Example

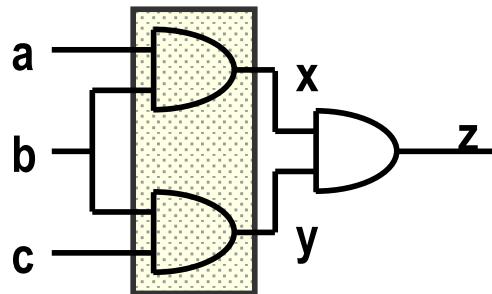
---



- ◆  $CODC_y = ODC_y = x' = b' + a'$
- ◆  $ODC_x = y' = b' + c'$
- ◆  $CODC_x = C_y(ODC_x) + ODC_x(ODC_y)'$   
 $= C_y(y') + y' x = y' x$   
 $= (b' + c')ab = abc'$

## Example (2)

---



- ◆ Allowed perturbation:

$$\Delta f_y = bc \rightarrow g_y = c$$

$$\Delta \delta_y = bc \oplus c = b' c \subseteq \text{CODC}_y = b' + a'$$

- ◆ Disallowed perturbation:

$$\Delta f_x = ab \rightarrow g_x = a$$

$$\Delta \delta_x = ab \oplus a = ab' \not\subseteq \text{CODC}_x = abc'$$

## Boolean methods Summary

---

- ◆ Boolean methods are powerful means to restructure networks
  - ▲ Computationally intensive
- ◆ Boolean methods rely heavily on *don't care* computation
  - ▲ Efficient methods
  - ▲ Possibility to subset the *don't care* sets
- ◆ Boolean method often change the network substantially, and it is hard to undo Boolean transformations

# Module 2

---

## ◆ Objectives

▲ Testability

▲ Relations between testability and Boolean methods

# Testability

---

- ◆ Generic term to mean easing the testing of a circuit
- ◆ Testability in logic synthesis context
  - ▲ Assume combinational circuit
  - ▲ Assume single/multiple stuck-at fault
- ◆ Testability is referred to as the possibility of generating test sets for all faults
  - ▲ Property of the circuit
  - ▲ Related to fault coverage

# Test for *stuck-at*s

---

- ◆ Net  $y$  stuck-at 0

- ▲ Input pattern that sets  $y$  to TRUE
  - ▲ Observe output
  - ▲ Output of faulty circuit differs from correct circuit

- ◆ Net  $y$  stuck-at 1

- ▲ Input pattern that sets  $y$  to FALSE
  - ▲ Observe output
  - ▲ Output of faulty circuit differs from correct circuit

- ◆ Testing is based on *controllability* and *observability*

# Test sets – *don't care* interpretation

---

- ◆ **Stuck-at 0 on net  $y$**

- ▲ { Input vector  $t$  such that  $y(t) \text{ ODC}' y(t) = 1$  }

- ◆ **Stuck-at 1 on net  $y$**

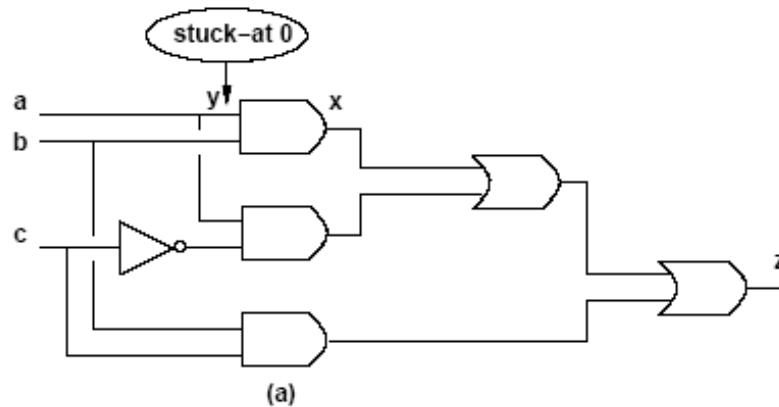
- ▲ { Input vector  $t$  such that  $y'(t) \text{ ODC}' y(t) = 1$  }

# Using testing methods for synthesis

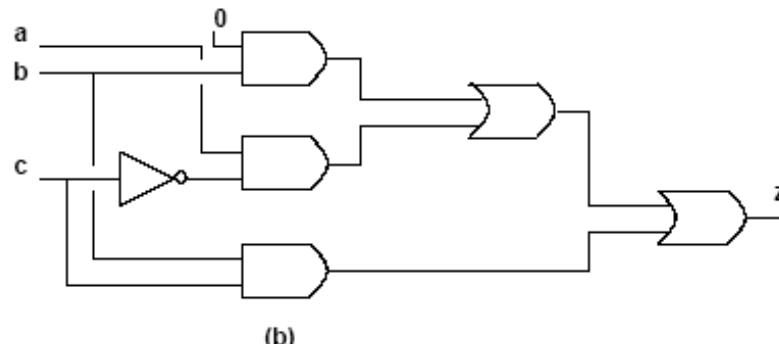
---

- ◆ Redundancy removal
  - ▲ Use ATPG to search for untestable fault
- ◆ If stuck-at 0 on net  $y$  is untestable:
  - ▲ Set  $y = 0$
  - ▲ Propagate constant
- ◆ If stuck-at 1 on net  $y$  is untestable
  - ▲ Set  $y = 1$
  - ▲ Propagate constant
- ◆ Iterate for each untestable fault

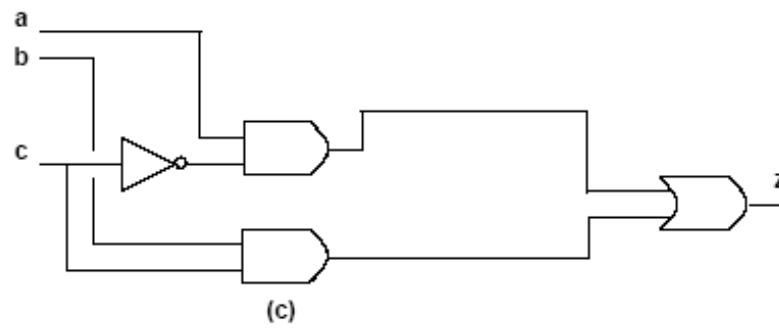
# Example



(a)



(b)



(c)

# Redundancy removal and perturbation analysis

---

## ◆ Stuck-at 0 on $y$

▲  $y$  set to 0. Namely  $g_x = f_x|_{y=0}$



▲ Perturbation:

$$\nabla \delta = f_x \oplus f_x|_{y=0} = y \cdot \partial f_x / \partial y$$

## ◆ Perturbation is feasible $\Leftrightarrow$ fault is untestable

▲ No input vector  $t$  can make  $y(t) \cdot ODC_y'(t)$  true

▲ No input vector  $t$  can make  $y(t) \cdot ODC_x'(t) \cdot \partial f_x / \partial y$  true

$$\nabla \text{Because } ODC_y = ODC_x + (\partial f_x / \partial y)'$$

# Redundancy removal and perturbation analysis

---

◆ Assume untestable stuck-at 0 fault.

◆  $y \cdot ODC_x' \cdot \partial f_x / \partial y \subseteq SDC$

◆ Local don't care set:

▲  $DC_x \supseteq ODC_x + y \cdot ODC_x' \cdot \partial f_x / \partial y$

▲  $DC_x \supseteq ODC_x + y \cdot \partial f_x / \partial y$

◆ Perturbation  $\delta = y \cdot \partial f_x / \partial y$

▲ Included in the local don't care set

# Rewiring

---

- ◆ **Extension to redundancy removal**

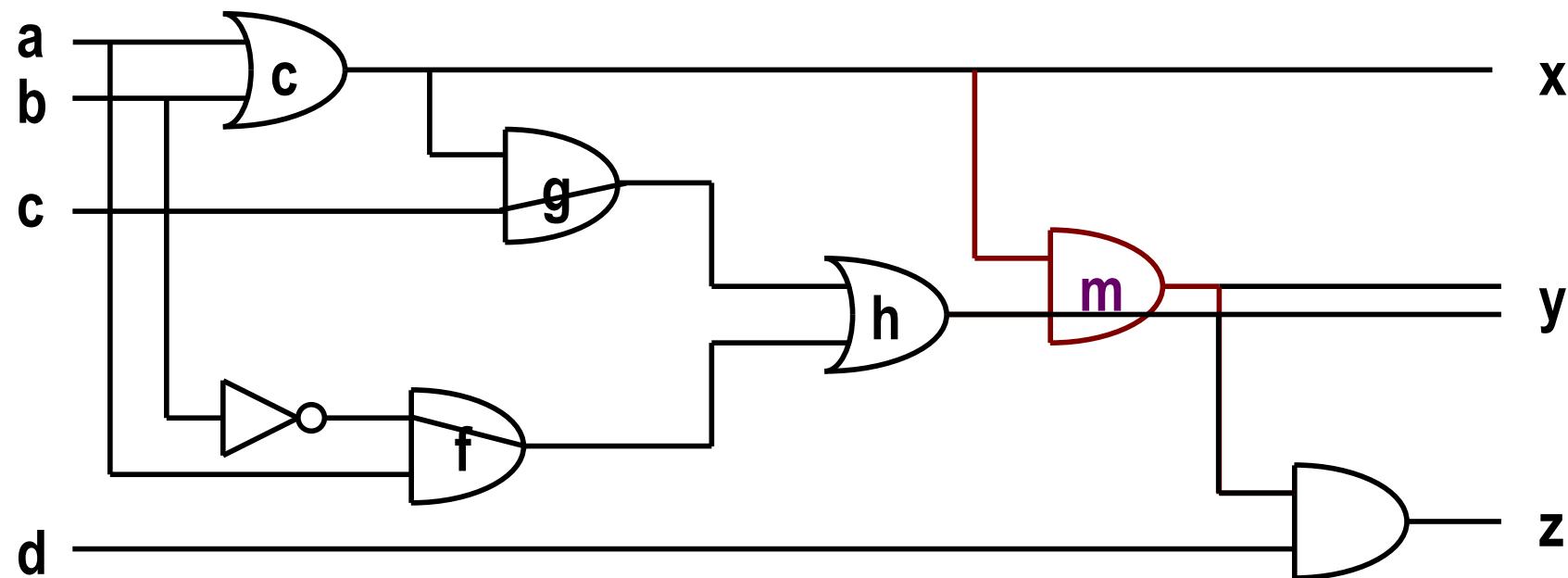
- ▲ Add connection in a circuit
  - ▲ Create other redundant connections
  - ▲ Remove redundant connections

- ◆ **Iterate procedure to reduce network**

- ▲ A connection corresponds to a wire
  - ▲ Rewiring modifies gates and wiring structure
  - ▲ Wires may have specific costs due to distance

# Example

---



# Synthesis for testability

---

- ◆ **Synthesize fully testable circuits**
  - ▲ For single or multiple stuck-at faults
- ◆ **Realizations**
  - ▲ Two-level forms
  - ▲ Multi-level networks
- ◆ **Since synthesis can modify the network properties, testability can be addressed during synthesis**

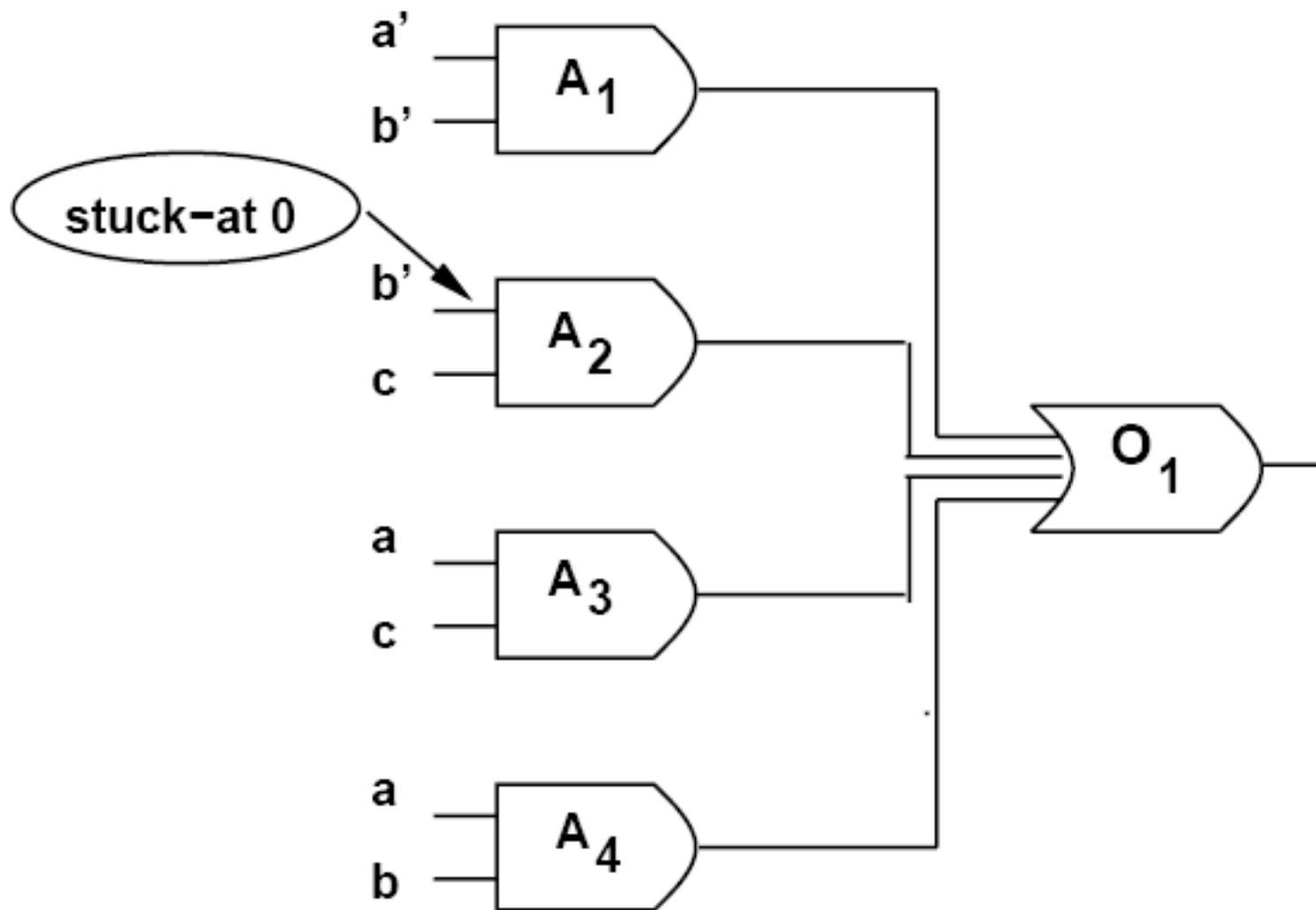
## Two-level forms

---

- ◆ Full testability for single stuck-at faults:
  - ▲ Prime and irredundant covers
- ◆ Full testability for multiple stuck-at faults
  - ▲ Prime and irredundant cover when
    - ▼ Single output function
    - ▼ No product-term sharing
    - ▼ Each component is prime and irredundant

# Example $f = a' b' + b' c + ac + ab$

---



# Multiple-level networks

---

- ◆ Consider logic networks with local functions in sop form
- ◆ Prime and irredundant network
  - ▲ No literal and no implicant of any local function can be dropped
  - ▲ The AND-OR implementation is fully testable for single *stuck-at* faults
- ◆ Simultaneous prime and irredundant network
  - ▲ No subsets of literals and no subsets of implicants can be dropped
  - ▲ The AND-OR implementation is fully testable for multiple *stuck-at*s

# Synthesis for testability

---

- ◆ Heuristic logic minimization (e.g., Espresso) is sufficient to insure testability of two-level forms
- ◆ To achieve fully testable networks, simplification has to be applied to all logic blocks with full *don't care* sets
- ◆ In practice, *don't care* sets change as neighboring blocks are optimized
- ◆ Redundancy removal is a practical way of achieving testability properties

# Summary – Synthesis for testability

---

- ◆ There is synergy between synthesis and testing
  - ▲ Don't care conditions play a major role in both fields
- ◆ Testable network correlate to a small area implementation
- ◆ Testable network do not require to slow-down the circuit
- ◆ Algebraic transformations preserve multi-fault testability, and are preferable under this aspect